GetNormalMap
采集并保存 2D 图与带有法向量的点云。
# Copyright (c) RVBUST, Inc - All rights reserved.
import PyRVC as RVC
import numpy as np
import os
# Make sure you install the opencv-python.
import cv2
from Utils.Tools import *
def App():
# Initialize RVC X system.
RVC.SystemInit()
# Choose RVC X Camera type (USB, GigE or All)
opt = RVC.SystemListDeviceTypeEnum.All
# Scan all RVC X Camera devices.
ret, devices = RVC.SystemListDevices(opt)
print("RVC X Camera devices number:%d" % len(devices))
# Find whether any RVC X Camera is connected or not.
if len(devices) == 0:
print("Can not find any RVC X Camera!")
RVC.SystemShutdown()
return 1
print("devices size =%d" % len(devices))
# Create a RVC X Camera and choose use left side camera.
x = RVC.X1.Create(devices[0], RVC.CameraID_Left)
# Test RVC X Camera is valid or not.
if x.IsValid() == True:
print("RVC X Camera is valid!")
else:
print("RVC X Camera is not valid!")
RVC.X1.Destroy(x)
RVC.SystemShutdown()
return 1
#PrintCaptureMode(devices[0])
# Open RVC X Camera.
ret1 = x.Open()
# Test RVC X Camera is opened or not.
if ret1 and x.IsOpen() == True:
print("RVC X Camera is opened!")
else:
print("RVC X Camera is not opened!")
RVC.X1.Destroy(x)
RVC.SystemShutdown()
return 1
# Print ExposureTime Range
_, exp_range_min, exp_range_max = x.GetExposureTimeRange()
print("ExposureTime Range:[{}, {}]".format(exp_range_min, exp_range_max))
# Set capture parameters.
cap_opt = RVC.X1_CaptureOptions()
# Transform point map's coordinate to camera or reference plane.
cap_opt.transform_to_camera = True
# Set noise points filter range (0~30).
cap_opt.filter_range = 0
# Set camera exposure time (3~100) ms.
cap_opt.exposure_time_2d = 30
cap_opt.exposure_time_3d = 30
# Calculate normal or not.
cap_opt.calc_normal = True
# Neighborhood radius in pixel of calculating normal, > 0.
cap_opt.calc_normal_radius = 5
# Capture a point map and a image with default setting.
ret2 = x.Capture(cap_opt)
# Create saving address of image and point map.
save_address = "Data"
TryCreateDir(save_address)
if ret2 == True:
print("RVC X Camera capture successed!")
# Get image data and image size.
img = x.GetImage()
width = img.GetSize().cols
height = img.GetSize().rows
# Check the camera color information.
print("width=%d, height=%d" % (width, height))
if img.GetType() == RVC.ImageTypeEnum.Mono8:
print("This is mono camera")
else:
print("This is color camera")
# Convert image to array and save it.
img = np.array(img, copy=False)
cv2.imwrite("Data/test.png", img)
print("Save image successed!")
# Convert point map (m) and normals to array and save it.
pm = x.GetPointMap()
normals = pm.GetNormalDataPtr()
# Modified the usage of normals
# normals = normals.reshape(-1, 3)
normals = np.array(normals, copy=False).reshape(-1, 3)
pm = np.array(pm, copy=False).reshape(-1, 3)
SavePointMapWithNormal(pm, normals, height*width, "Data/test.ply")
print("Save point map with normal successed!")
else:
print("RVC X Camera capture failed!")
print(RVC.GetLastErrorMessage())
x.Close()
RVC.X1.Destroy(x)
RVC.SystemShutdown()
return 1
# Close RVC X Camera.
x.Close()
# Destroy RVC X Camera.
RVC.X1.Destroy(x)
# Shutdown RVC X System.
RVC.SystemShutdown()
return 0
if __name__ == '__main__':
App()